Ranges of bimodule projections and reflexivity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Maps and Bimodule Projections

We construct a counterexample to Solel’s[25] conjecture that the range of any contractive, idempotent, MASA bimodule map on B(H) is necessarily a ternary subalgebra. Our construction reduces this problem to an analogous problem about the ranges of idempotent maps that are equivariant with respect to a group action. Such maps are important to understand Hamana’s theory of G-injective operator sp...

متن کامل

Projections in Operator Ranges

If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A−1(S⊥) establishes a notion of compatibility. We show that the compatibility of (A,S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.

متن کامل

Ranges of Positive Contractive Projections in Nakano Spaces

We show that in any nontrivial Nakano space X = Lp(·)(Ω, Σ, μ) with essentially bounded random exponent function p(·), the range Y = R(P ) of a positive contractive projection P is itself representable as a Nakano space LpY (·)(ΩY , ΣY , νY ), for a certain measurable set ΩY ⊆ Ω (the support of the range), a certain sub-sigma ring ΣY ⊆ Σ (with maximal element ΩY ) naturally determined by the la...

متن کامل

The higher relation bimodule

Given a finite dimensional algebra A of finite global dimension, we consider the trivial extension of A by the A − A-bimodule ⊕i≥2 Ext 2 A(DA,A), which we call the higher relation bimodule. We first give a recipe allowing to construct the quiver of this trivial extension in case A is a string algebra and then apply it to prove that, if A is gentle, then the tensor algebra of the higher relation...

متن کامل

Injectivity of the Predual Bimodule

Let A be a dual Banach algebra with predual A∗ and consider the following assertions: (A) A is Connes-amenable; (B) A has a normal, virtual diagonal; (C) A∗ is an injective A-bimodule. For general A, all that is known is that (B) implies (A) whereas, for von Neumann algebras, (A), (B), and (C) are equivalent. We show that (C) always implies (B) whereas the converse is false for A = M(G) where G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2012

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2012.03.001